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ABSTRACT

Stem cell therapy is a promising strategy for tissue regeneration. The therapeutic benefits of cell

therapy are mediated by both direct and indirect mechanisms. However, the application of stem

cell therapy in the clinic is hampered by several limitations. This concise review provides a brief

introduction into stem cell therapies for ischemic heart disease. It summarizes cell-based and cell-

free paradigms, their limitations, and the benefits of using them to target disease. STEM CELLS

TRANSLATIONAL MEDICINE 2018;00:000–000

SIGNIFICANCE STATEMENT

The review provides an introduction to current barriers and limitations in stem cell therapies
for treating ischemic heart diseases. These limitations include low retention rate, tumor growth
risks, off-target migration, short-life in storage and so on. This review then provide potential sol-
utions by summarizing the latest technological developments used to improve cell retention,
reduce transplantation risk, and target cells to the injury.

INTRODUCTION

Cardiovascular disease is a major cause of morbid-
ity and mortality in the world, as well as its major
health care burden [1]. In the U.S., cardiovascular
disease has a mortality rate of nearly 801,000 peo-
ple per year, and is listed as the country’s leading
cause of death. Ischemic heart disease (IHD),
including myocardial infarction (MI), is an especially
devastating type of cardiovascular disease. Insuffi-
cient blood supply to the heart muscle can lead to
permanent and progressive damage to the myocar-
dium, which can further develop into heart failure.

Pharmacological treatments, such as angio-
tensin receptor blockers, aldosterone antagonists,
and b-blockers have improved clinical outcomes
for patients with heart failure, but they are not
able to reduce the size of established scar tissue
on the heart [2–4]. Heart transplantation is usually
the last option, but is limited by the availability of
donor organs. Regenerative medicine strategies,
including stem cell therapies, have gained atten-
tion as promising treatment options for IHD.

Stem Cell Therapies in Ischemic Heart

Disease

Decades ago, the heart was considered a termi-
nally differentiated organ with limited intrinsic

regenerative capacity [5]. A paradigm shift
emerged when intrinsic cardiac stem cells and car-
diomyocyte turnover were reported by various
groups worldwide [6]. Cardiomyocyte renewal
accelerates when injury occurs. Nonetheless, the
spontaneous regenerative capacity of mature
heart alone is insufficient to compensate for the
pathological loss of cardiac myocytes during a big
injury such as a MI [5]. Multiple types of stem/
progenitor-like cells have been reported to con-
tribute to cardiac repair in IHD. These include non-
cardiac resident cells such as bone marrow-
derived cells [7], mesenchymal stem cells (MSCs)
[8] and cardiac resident cells, which includes c-
Kit1 cardiac progenitor cells (CPCs) [9, 10], Sca-11

CPCs [11, 12], side population cells [13], and
cardiosphere-derived cells (CDCs) [14–16].
However, the differentiation of stem cells after
transplantation and the paracrine strategies are
unlikely to be effective or just show modest effi-
cacy in long-term, randomized clinical trials, which
are in stark contrast to the exciting scientific pro-
gress in preclinical models [4, 17–19]. In 2017,
Nature Biotechnology published an editorial
“A futile cycle in cell therapy” [20]. In that paper,
the editors expressed a severe concern on the
none-to-marginal benefits of cardiac cell therapy
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trials and argued that cardiac cell therapy is “far from getting
approval” and “much more preclinical data needs to be per-
formed before any new clinical trials.” With such embarrassing
outcomes from clinical trials and concerns from both regulatory
and funding agencies, one may wonder: is cardiac cell therapy
dead? Or to be more positive, we should ask: what can we do
next?

In this review, we will limit our discussion to adult (multipo-
tent) stem cells only as these cells are the majority in current
clinical trials [21]. We agree that pluripotent stem cell therapy
including embryonic stem cells (ES) and induced pluripotent stem
cells (iPS) [22–24] represent the future of regenerative medicine.
Nonetheless, the regulatory hurdles for such riskier candidates
will likely to be high and the use of such cells in the clinic is still
limited.

Mechanisms of Stem Cell-Mediated Heart Repair

Before we admit the failures and propose a new direction, we
should first be looking for the modes of actions (MOAs) that eluci-
date the mechanisms behind cardiac cell therapy. FDA requires
clear MOAs for approving new chemical and small molecule drugs
[25]. Even for the recently developed biologic drugs such as anti-
body drugs and CAR-T therapies, the MOAs are well defined [26].
However, this is not the case for cardiac cell therapy or stem cell
therapies in general. The mechanisms for stem cell-mediated
heart repair are complicated. The initial thoughts are injected
stem cells repair the host tissue by direct tissue replacement (i.e.,
cardiac stem cell differentiation) [27]. However, the limited stem
cell engraftment and direct differentiation of transplanted cells
into newly born cardiomyocytes and vascular cells, either by trans-
differentiation or cell fusion, could not explain the obvious cardiac
benefits comprehensively [27–29]. Later on, secretion of soluble
factors, exosomes, and non-coding RNAs, were viewed as the
major contributors to the functional benefits of stem cell based
therapies [30, 31]. These paracrine substances promote cardiac
repair by activating endogenous precursors, promoting neovascu-
larization, modulating extracellular matrix, cytoprotection, and
inhibiting apoptosis/fibrosis/inflammation [32, 33]. Growth factors
secreted by adult stem cells (such as CDCs and MSCs) include vas-
cular endothelial growth factor (VEGF), hepatocyte growth factor,
stromal-derived factor-1 (SDF-1), and insulin-like growth factor-1
(IGF-1), among many others [34–36]. In particular, IGF-1 could
inhibit apoptosis of cardiomyocytes in addition to recruiting
endogenous stem cells and promoting angiogenesis [37]. SDF-1,
VEGF, basic fibroblast growth factor, connective tissue growth
factory-b, and angiogenin-1 can also be secreted by stem cells,
which exhibit enhancement to angiogenesis [38–41]. In addition,
Xie et al. reported that cell–cell contact was pivotal to the func-
tional benefits of cell therapies [42]. These results indicate that on
top of soluble factors, cell membranes play an important role in
stem cell-mediated regeneration.

To date, advances in cardiovascular therapies have focused on
the heart immediately after injury, while the most urgent target
for therapies is advanced cardiomyopathy, as those patients don’t
have any other options besides heart transplant. Many in the field
believe that paracrine effects are not able to treat advanced heart
failure. However, given the regulatory hurdles for pluripotent
stem cells, adult stem cells still remain the most viable cell therapy
products.

Barriers in Stem Cell Therapies for Heart Repair

We name a few concerns that one should be taken into considera-
tion: (a) tumorigenicity; (b) immunogenicity; (c) retention/engraft-
ment; (d) tissue targeting; (e) storage/shipping stability; (f)
appropriate (large) animal models.

Tumorigenicity. The risk of tumorigenicity is a salient concern
for both pluripotent stem cells (such as ES cells and iPS cells) [43,
44]. This is less of a concern when using adult stem cells. There are
only a few reports of tumor formation from adult stem cells [43].
Nonetheless, as living agents, the risk of tumor formation in
injected stem cells should never be neglected.

Immunogenicity. Immunologic intolerance of host is another
major point to be considered as this would affect the function of
stem cells [43]. Autologous products can obviate rejection, but
the process to generate autologous cells is expensive and time
consuming. In addition, the manufacturing process of stem cells
can cause immunological issues, such as fetal bovine serum and
sialic acid derivative Neu5G from mouse feeder layers have both
been shown to alter the immunogenicity of stem cells [43].

Retention/Engraftment. Stem cell transplantations into the
heart are hampered by poor survival and engraftment rate [45,
46], limiting the long-term efficacy of stem cells in the injured
heart. The harsh microenvironment after the ischemia/reperfusion
injury is the major barrier for cell survival and engraftment after
delivery. What’s worse, reperfusion causes secondary injury due
to reactive oxygen species and inflammatory cells [47].

Tissue Targeting. One way to delivery cells is to directly inject
into the faulty tissue (e.g., intramyocardial injection of stem cells
into the infarct border zone of the heart). However, this usually
requires open-chest surgery which is less ideal for patients with
mild-to-moderate heart diseases. Intravascular routes (such as
intravenous or intracoronary injections by catheter) are safer but
the challenge then becomes systematically targeting the delivery
of cells to the injured heart.

Storage/Shipping Stability. Obviously, there is also the issue of
cell liability affected by the freezing/thawing process. As a “living”
drug, cells need to be carefully preserved and processed before
clinical applications. Off-the-shelf availability isn’t normally the
case.

Available Solutions to Barriers

Solutions to Low Retention/Engraftment. To overcome the
low retention and engraftment issue, one straightforward strategy
is to apply repeated dosing [48–50]. A single large dose presents a
lot of cells at the beginning but soon gets “washed out” with a
quick decay. Multiple dosing can create a durable cell persistence
and paracrine signal for tissue repair. However, it is noteworthy
that repeated dosing is risky for invasive delivery routes such as
intramyocardial and intracoronary injections. Systemic delivery
such as intravenous injection needs to be proposed. Another strat-
egy to counter rapid washout of injected cells is to encapsulate
stem cells in biomaterials. Injectable hydrogels have been used
as cell carriers to boost cell retention and attenuate immune reac-
tions [51, 52]. Another method to increase cell retention is to
deliver therapeutic cells in a cardiac patch sutured or sprayed
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onto the heart surface [53–55]. The hydrogel and cardiac patch
strategies normally require open-chest surgery, hampering the
use of them for mild-to-moderate patients with heart failure after
MI. Nonetheless, the benefit/risk ratio could be high for patients
with advanced heart failure and/or patients who need open-chest
surgery regardless.

Solutions to Injury Targeting. Previously, we reported the
application of magnetic targeting to augment cell retention in the
heart [56–58]. Stem cells were pre-labeled with iron particles.
During injection, an external magnetic field was placed above the
heart to keep the cells in the injected area. One caveat of this
strategy is that the fast decay of magnetic field limits the effective
distance of this targeting strategy. Also, the placement of a strong
magnetic field may represent a threat to the sensitive equipment
in the operating room.

As another strategy, studies from our lab and others have also
demonstrated that antibodies against cardiac injury biomarkers
such as myosin light chain can be used to target stem cells to the
injured heart [59, 60]. However, a major disadvantage is that such
targeting fully relies on that particular biomarker, which is only
expressed acutely after the injury. In addition, this strategy
requires expensive antibody processing technologies.

In addition, platelet binding molecules or whole platelet mem-
branes can be used to adhere injected stem cells to the injured
endothelium [61]. Recently, our group has developed a method to
employ platelet membranes to guide intravascularly delivered car-
diac stem cells to the injured heart [61]. These studies shed the
light on the development of targeting strategies to direct systemi-
cally delivered stem cells to the injured heart.

Solutions to Tumorigenicity/Immunogenicity. As long as live
cells are used, the risk of tumorigenicity cannot be completely
ignored. Also, immunogenicity is another issue when non-
autologous cells are used. Cell-free agents have been proposed to
replace stem cell therapies for heart repair. Recently, extracellular
vesicles, including microvesicles and exosomes, represent the bio-
active components (mRNA, miRNAs, proteins) of stem cells, and
have been shown to recapitulate the salutary effects of cell ther-
apy on myocardial repair after injury [62]. Exosomes are 30–
100 nm tiny vesicles secreted by a variety of cell types including
adult stem cells [62]. The regenerative potential of exosomes

Figure 1. Fabrication of CMMPs. (A): Illustration showing the fabrication of CMMPs and the application of CMMPs for therapeutic heart
regeneration. (B): CMMPs are formed with a core polymer particle containing stem cell-secreted factors and a coat from stem cell mem-
branes (modified from Ref. [68]). Abbreviation: CSC, cardiac stem cell.

Figure 2. Interaction between synthetic MSCs and cardiomyocytes
(modified from Ref. [69]). Scale bar, 20 um. Abbreviation: MSCs,
mesenchymal stem cells.
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treating in heart diseases has been demonstrated by many groups
[63–67]. Nevertheless, the extraction of exosomes is still lack
standard methods, and only a small number of exosomes can be
produced from stem cell-conditioned media.

New Solutions: Cell Mimicking Microparticles

We recently developed stem cell biomimetic microparticles,
namely cell mimicking microparticles (CMMPs), for heart repair
[68, 69]. It starts with biodegradable and biocompatible polymers
such as poly (lactic-co-glycolic acid), which has provided a safe
and non-toxic building block for various control-release systems as
a biocompatible and biodegradable polymer [70]. Using a double
emulsion method [71], the stem cell secretome can be incorpo-
rated into the biodegradable polymer to from a drug-releasing
microparticle.

To make the microparticle more biomimetic, we sought to
coat the particle with stem cell membranes. It has been well
established for the methods of coating polymer nanoparticles
with cell membranes derived from red blood cells [72], platelets
[73], and cancer cells [74]. We coated the microparticles with car-
diac stem cell membranes (Fig. 1) to make the final product

CMMPs [68]. Inheriting the major functional components of stem
cells, these CMMPs act as synthetic cardiac stem cells, displaying
therapeutic benefits similar to real cardiac stem cells in rodent
models of MI. CMMPs overcome several major limitations of live
stem cells (i.e., difficulty of cryopreservation, tumorigenicity). This
strategy can be applied to other cell types such as MSCs [69]. We
fabricated synthetic MSC particles (Fig. 2). Similarly, these agents
could undergo freezing/thawing process without changes in their
properties. In addition, synthetic MSCs could endure lyophilization
processes without changing their properties or causing inflamma-
tion in the heart. As summarized in Table 1, CMMPs differ from
exosomes in several ways.

The future development of CMMPs for clinical application
still faces several challenges. First, the manufacturing of syn-
thetic stem cells still requires cell processing. Nonetheless, since
cells are only used as “production lines” rather than the “final
products,” steps for cell harvest and cell packaging are elimi-
nated. In addition, final formulation for cell-free products is far
less challenging than that for cellular products. Also, more com-
pact systems such as bioreactors and fibercells can be used to
produce conditioned media to make synthetic stem cells.

Table 1. Summary of the difference between CMMP and exosome

Size Coat Cargo Backbone Stability in the body

Exosome 30–100 nm CD9, CD63, CD81, Alix,
Flotillin-1, Tsg101

microRNAs mRNAs
proteins

None Minutes of blood half-life;
untaken by cells

CMMP >10 lm Whatever on the
cell membrane

Exosomes and
other proteins

Biodegradable
polymers

Days to weeks in the heart

Abbreviation: CMMP, cell mimicking microparticles.

Figure 3. Challenges to the field of cardiac cell therapy and emerging new solutions.
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Second, the current sizes for synthetic stem cells are at the
micron level. Systemic delivery is an issue. In the studies of
Tang et al. and Luo et al. [68, 69], the microparticles were
delivered by direct intramyocardial injection. Despite the fact
that mechanisms for extravasation of micro-sized particles do
exist (i.e., angiopellosis [75]), embolization risks remain for vas-
cular delivery. Future efforts should focus on developing nano-
sized and targeted synthetic stem cells for systemic delivery.
Even though targeted infusion using coronary catheters usually
results in better engraftment, systemic delivery such as intrave-
nous injection is more convenient and has already been estab-
lished as a possible conduit for therapy [76].

CONCLUSION

In summary, after 17 years of testing, cardiac cell therapy is not
dying and should not die. Despite the challenges, new solutions
are emerging to move the field forward (Fig. 3). Millions of
patients all over the world are looking for new alternatives to
improve their quality of life and extend their life expectancy. The
development of new technologies, such as bioengineering/bioma-
terials tools, exosome therapies, synthetic stem cells, hold the
potential to revitalize this field.
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